11beta-hydroxyprogesterone acts as a mineralocorticoid agonist in stimulating Na+ absorption in mammalian principal cortical collecting duct cells.

نویسندگان

  • Marie-Edith Rafestin-Oblin
  • Jerome Fagart
  • Anny Souque
  • Cendrine Seguin
  • Marcelle Bens
  • Alain Vandewalle
چکیده

The binding of mineralocorticoid hormones to the mineralocorticoid receptor is the first step in a cascade of events leading to the stimulation of Na(+) reabsorption by renal cortical collecting duct (CCD) principal cells. The agonist properties of mineralocorticoid hormones are linked to contacts between their 21-hydroxyl group and Asn770, a residue of the ligand-binding domain of the human mineralocorticoid receptor (hMR). Here, we investigate whether the presence of a hydroxyl group at position 11, 17, or 20 could also alter the activity of progesterone (P), a mineralocorticoid antagonist without the 21-hydroxyl group. Both 17 alpha-hydroxyprogesterone (17OHP) and 20 alpha-hydroxyprogesterone (20OHP) antagonized the aldosterone-induced trans-activation activity (IC(50): 17OHP, 10(-7) M; 20OHP, 10(-8) M) of the hMR transiently expressed in COS-7 cells lacking steroid receptors. In cultured mouse mpkCCD(cl4) principal cells, 17OHP and 20OHP also prevented the aldosterone-stimulated amiloride-sensitive component of the short-circuit current (Ams I(sc)), reflecting Na(+) absorption mediated by the epithelial Na(+) channel (ENaC). In contrast, 11 beta-hydroxyprogesterone (11OHP) activated the transiently expressed hMR in COS-7 cells in a dose-dependent manner (ED(50): 10(-8) M) and, like aldosterone, stimulated Ams I(sc) in mpkCCD(cl4) cells. Docking 11OHP within the hMR-ligand-binding domain homology model revealed that the agonist activity of 11OHP is caused by contacts between its 11 beta-hydroxyl group and Asn770. Furthermore, 11OHP was unable to activate the mutant hMR/N770A, in which Ala is substituted for Asn at position 770. These findings demonstrate that in the absence of the 21-hydroxyl group, the 11 beta-hydroxyl group can produce the contact with the hMR-Asn770 required for the hMR activation leading to stimulated Na(+) absorption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular responses to steroids in the enhancement of Na+ transport by rat collecting duct cells in culture. Differences between glucocorticoid and mineralocorticoid hormones.

It has recently been discovered that both mineralocorticoid (MC) and glucocorticoid (GC) hormones can stimulate electrogenic Na+ absorption by mammalian collecting duct cells in culture. In primary cultures of rat inner medullary collecting duct (IMCD) cells, 24-h incubation with either MC or GC agonist stimulates Na+ transport approximately threefold. We have now determined that the effects we...

متن کامل

The synthetic androgen methyltrienolone (r1881) acts as a potent antagonist of the mineralocorticoid receptor.

Aldosterone binds to the mineralocorticoid receptor (MR) and exerts fine control over Na+ absorption in renal collecting duct cells (CCDs). Many natural and synthetic steroids can also bind to the MR to produce agonist or antagonist effects. Here, we investigate whether androgenic hormones act as MR agonist or antagonist ligands in CCDs. Testosterone (T), dihydrotestosterone (DHT), and methyltr...

متن کامل

Candidate genes in the regulation of Na+ transport by inner medullary collecting duct cells from Dahl rats.

Recently, we reported that primary cultures of inner medullary collecting duct cells from Dahl salt-sensitive (S) rats absorb more Na+ than do cells cultured from Dahl salt-resistant (R) rats. To begin to evaluate the molecular basis for this difference, we selected four candidate gene products that on the basis of their physiology and genetics could participate in regulation of Na+ transport b...

متن کامل

SGK integrates insulin and mineralocorticoid regulation of epithelial sodium transport.

The epithelial Na+ channel (ENaC) constitutes the rate-limiting step for Na+ transport across tight epithelia and is the principal target of hormonal regulation, particularly by insulin and mineralocorticoids. Recently, the serine-threonine kinase (SGK) was identified as a rapidly mineralocorticoid-responsive gene, the product of which stimulates ENaC-mediated Na+ transport. Like its close rela...

متن کامل

Hormone-regulated transepithelial Na+ transport in mammalian CCD cells requires SGK1 expression.

To study the role of serum and glucocorticoid-inducible kinase-1 (SGK1) in mammalian cells, we compared Na(+) transport rates in wild-type (WT) M1 cortical collecting duct cells with M1 populations stably expressing human full-length SGK1, NH(2)-terminal truncated (DeltaN-60) SGK1, "kinase-dead" (K127M) SGK1, and cells that have downregulated levels of SGK1 mRNA (antisense SGK1). Basal rates of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 62 6  شماره 

صفحات  -

تاریخ انتشار 2002